Ela Characterizing Lie (ξ-lie) Derivations on Triangular Algebras by Local Actions

نویسنده

  • XIAOFEI QI
چکیده

Let U = Tri(A,M,B) be a triangular algebra, where A, B are unital algebras over a field F and M is a faithful (A,B)-bimodule. Assume that ξ ∈ F and L : U → U is a map. It is shown that, under some mild conditions, L is linear and satisfies L([X, Y ]) = [L(X), Y ] + [X,L(Y )] for any X,Y ∈ U with [X, Y ] = XY − Y X = 0 if and only if L(X) = φ(X) + ZX + f(X) for all A, where φ is a linear derivation, Z is a central element and f is a central valued linear map. For the case 1 6= ξ ∈ F , L is additive and satisfies L([X,Y ]ξ) = [L(X), Y ]ξ + [X,L(Y )]ξ for any X, Y ∈ U with [X, Y ]ξ = XY − ξY X = 0 if and only if L(I) is in the center of U and L(A) = φ(A) + L(I)A for all A, where φ is an additive derivation satisfying φ(ξA) = ξφ(A) for each A. In addition, all additive maps L satisfying L([X, Y ]ξ) = [L(X), Y ]ξ + [X,L(Y )]ξ for any X,Y ∈ U with XY = 0 are also characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Lie derivations on triangular algebras by local actions

Let U = Tri(A,M,B) be a triangular algebra, where A, B are unital algebras over a field F and M is a faithful (A,B)-bimodule. Assume that ξ ∈ F and L : U → U is a map. It is shown that, under some mild conditions, L is linear and satisfies L([X, Y ]) = [L(X), Y ] + [X,L(Y )] for any X,Y ∈ U with [X, Y ] = XY − Y X = 0 if and only if L(X) = φ(X) + ZX + f(X) for all A, where φ is a linear derivat...

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Fixed point approach to the Hyers-Ulam-Rassias approximation‎ ‎of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras

‎In this paper‎, ‎using fixed point method‎, ‎we prove the generalized Hyers-Ulam stability of‎ ‎random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras‎ ‎and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

متن کامل

On dimension of a special subalgebra of derivations of nilpotent Lie algebras

‎Let $L$ be a Lie algebra‎, ‎$mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$‎. ‎We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields‎. ‎Also‎, ‎we classi...

متن کامل

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013